Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Geophysic...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Geophysical Research Solid Earth
Article . 2019 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The Effect of Wind and Atmospheric Stability on the Morphology of Volcanic Plumes From Vulcanian Eruptions

Authors: A. P. Poulidis; T. Takemi; M. Iguchi;

The Effect of Wind and Atmospheric Stability on the Morphology of Volcanic Plumes From Vulcanian Eruptions

Abstract

AbstractVolcanic plumes from small and moderate eruptions represent a challenge in the study of plume morphology due to eruption source parameter uncertainties and atmospheric influence. Sakurajima volcano, Japan, features such activity and due to its continuous eruptions in the recent years provides an ideal natural laboratory. A data set of 896 eruptions between 2009 and 2016 with well‐constrained plume heights, estimated erupted mass, and associated atmospheric conditions has been compiled. Plume heights ranged between 1,500 and 5,000 m and mainly developed under stable atmospheric stratification and low background wind speeds. The eruptions presented in the database were used to drive FPLUME, a 1‐D integral volcanic plume model, to study the simulated plume morphology. FPLUME was seen to provide consistent results under stable atmospheric stratification. A method for the real‐time monitoring of erupted mass used in the Sakurajima observatory was seen to provide appropriate first guess estimates for the eruptions, showing agreement with analytical and simulated mass flow rate calculations. Volcanic plumes from Sakurajima show significant influence by the atmospheric environment. The plume scaling parameter (Π) was used to characterize the expected degree of plume bending with results correlating well against modeled plume angles. The vertical wind profile was seen to have a significant impact on the resolved plume. Wind shear characteristics were seen to have a mechanical effect on the plume, aiding or inhibiting bending. Finally, potential issues were identified in simulations under unstable atmospheric conditions as the model either failed to provide a solution or overestimated the plume height.

Related Organizations
Keywords

FPLUME, Sakurajima, wind shear, eruption database, vulcanian eruption, plume model

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    10
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
10
Top 10%
Average
Top 10%
bronze