Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Geophysic...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Geophysical Research Solid Earth
Article . 2018 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Infrasonic Early Warning System for Explosive Eruptions

Authors: Sébastien Valade; Riccardo Genco; Emanuele Marchetti; Maurizio Ripepe; Dario Delle Donne; Dario Delle Donne; Lorenzo Innocenti; +1 Authors

Infrasonic Early Warning System for Explosive Eruptions

Abstract

AbstractExplosive volcanic eruptions can eject large amounts of ash into the atmosphere, posing a serious threat to populations living near the volcano. The abrupt occurrence of such events requires a rapid response and proper volcanic hazard evaluation. Current monitoring procedures still require human intervention, which often results in significant delays between the occurrence of an eruption and notifications being dispatched. We show how dedicated infrasound array processing can be used to detect and notify the authorities, automatically and in real time, of the onset of explosive eruptions. Conceptually, our method relies on the strong coupling between infrasound and the explosive process, and it is not based on probabilistic considerations but on the ability infrasound has to detect the early stage of the explosive phase. This procedure has been tested for the last 8 years, and it is currently applied to issue early warnings for explosive eruptions at Etna Volcano. We show that the system is able to provide a prealert ~1 hr before the eruption, and it has a 96.6% success rate, with only 1.7% false positive alerts and no false negative alerts. This is, to our knowledge, the first example of an operational early warning system totally based on an unsupervised algorithm that provides automatic notifications of eruptions to a government agency. We show that the same early warning concept might be applicable to arrays at large distances (>500 km), suggesting that infrasound could be successfully used to issue automatic notifications of ongoing eruptions at regional to global scales.

Keywords

aviation safety; early warning; explosive eruption; infrasound

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    67
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
67
Top 1%
Top 10%
Top 1%
bronze