Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Durham Research Onli...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Geophysical Research Atmospheres
Article . 2012 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Toward an understanding of disequilibrium dihedral angles in mafic rocks

Authors: Holness, M.B.; Humphreys, M.C.S.; Sides, R.; Helz, R.; Tegner, C.;

Toward an understanding of disequilibrium dihedral angles in mafic rocks

Abstract

The median dihedral angle at clinopyroxene‐plagioclase‐plagioclase junctions in mafic rocks, Θcpp, is generally lower than equilibrium (109° ± 2°). Observation of a wide range of mafic bodies demonstrates that previous work on systematic variations of Θcpp is incorrect in several important respects. First, the spatial distribution of plagioclase compositional zoning demonstrates that the final geometry of three‐grain junctions, and hence Θcpp, is formed during solidification (the igneous process): sub‐solidus textural modification in most dolerites and gabbros, previously thought to be the dominant control on Θcpp, is insignificant. Θcpp is governed by mass transport constraints, the inhibiting effects of small pore size on crystallization, and variation in relative growth rates of pyroxene and plagioclase. During rapid cooling, pyroxene preferentially fills wider pores while the narrower pores remain melt‐filled, resulting in an initial value of Θcpp of 78°, rather than 60° which would be expected if all melt‐filled pores were filled with pyroxene. Lower cooling rates create a higher initial Θcpp due to changes in relative growth rates of the two minerals at the nascent three‐grain junction. Low Θcpp (associated with cuspate clinopyroxene grains at triple junctions) can also be diagnostic of infiltration of previously melt‐free rocks by late‐stage evolved liquids (the metasomatic process). Modification of Θcpp by sub‐solidus textural equilibration (the metamorphic process) is only important for fine‐grained mafic rocks such as chilled margins and intraplutonic chill zones. In coarse‐grained gabbros from shallow crustal intrusions the metamorphic process occurs only in the centers of oikocrysts, associated with rounding of chadacrysts.

Country
United Kingdom
Keywords

669

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    36
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
36
Top 10%
Top 10%
Top 10%
Green
bronze