Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Geophysic...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Geophysical Research Atmospheres
Article . 2012 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 2 versions
addClaim

Modeling the properties of plasmaspheric hiss: 1. Dependence on chorus wave emission

Authors: Chen, Lunjin; Bortnik, Joacob; Li, Wen; Thorne, Richard M.; Horne, Richard B.;

Modeling the properties of plasmaspheric hiss: 1. Dependence on chorus wave emission

Abstract

There is increasing evidence that plasmaspheric hiss is formed by the evolution of a portion of chorus waves that are excited in the plasmatrough and propagate into the plasmasphere. Comparison between the statistical spatial distributions of these two emissions in the morning sector during active times from THEMIS over ∼3 years shows that the two emissions have comparable peak intensities but are distinct in their spatial distributions. We present a modeling study of the hiss spectrum, based on ray tracing, by taking the observed chorus source region as an input in the magnetosphere, which contains cold and suprathermal electrons. Our modeling results show that we are able to reproduce the main features of typical hiss, including the frequency spectrum, wave normal angle and spatial distribution. However, the simulated hiss intensity is weaker (∼15 dB less) than the observed intensity, which suggests some modest internal amplification inside the plasmasphere. The responses of hiss to variations in the spatial distribution, wave normal angle distribution and frequency distribution of the source chorus are examined. We find that the majority of hiss formation is due to a small portion of chorus emission originating within ∼3 RE from the plasmapause, with wave normal directions pointing toward the Earth at an angle of 30°–60°, and over a frequency range of 0.1–0.3 fce. If the chorus power is made to increase closer to the plasmapause, the hiss intensity and the peak frequency also increases, which roughly mimics active geomagnetic conditions. Variations of the chorus source distribution do not significantly affect the wave normal angle distribution and frequency distribution of hiss, but does impact the absolute intensity of the resulting hiss.

Country
United Kingdom
Keywords

plasmaspheric hiss, ray tracing, distribution, chorus, radiation belt, wave normal

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    77
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
77
Top 10%
Top 10%
Top 10%
Green
bronze