Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Geophysic...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Geophysical Research Atmospheres
Article . 2008 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Crustal dynamics of Mount Vesuvius from 1998 to 2005: Effects on seismicity and fluid circulation

Authors: MADONIA, P; C. FEDERICO; P. CUSANO; S. PETROSINO; AIUPPA, Alessandro; S. GURRIERI;

Crustal dynamics of Mount Vesuvius from 1998 to 2005: Effects on seismicity and fluid circulation

Abstract

This paper presents the results of hydrogeochemical and seismological studies carried out at Mount Vesuvius during the period June 1998 to December 2005. Hydrogeochemical data show the occurrence of slowly varying long‐term variations in the total dissolved salts and bicarbonate contents of the groundwaters, accompanied by a general decline in water temperatures. The temporal distributions of air temperature and rainfall in the Vesuvius area suggest that these variations do not depend on changes in the hydrological regime. The changes in the geochemical parameters are accompanied by slight variations in both the seismicity rate and energy release. A further relationship between seismic activity and fluid discharge rate is highlighted by a particular episode that occurred in August 2005, when a soil thermal anomaly was observed a few weeks before the occurrence of a very shallow earthquake. Moment tensor analysis of this earthquake suggests that the most plausible source mechanism is a shear faulting combined with the opening of tensile crack. This feature is often observed in volcanic areas and it is usually related to fluid‐ and/or gas‐driven rock fracturing. The observed seismological, hydrological, and geochemical temporal changes are interpreted not as changes of the volcanic system but in terms of an external forcing as identified in the variation of the regional and local stress field acting on the volcano. This study has inferences onto the evaluation of the state of activity of volcanic systems and the eventual detection of unrest phenomena.

Country
Italy
Keywords

hydrogeochemistry, vesuvius

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    18
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
18
Top 10%
Average
Average
bronze