Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Geophysic...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Geophysical Research Atmospheres
Article . 2001 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Acoustic environment of the Martian surface

Authors: Jean-Pierre Williams;

Acoustic environment of the Martian surface

Abstract

Prompted by the Mars Microphone aboard the 1998 Mars Polar Lander, a theoretical study of the acoustical environment of the Martian surface has been made to ascertain how the propagation of sound is attenuated under such conditions and to predict what sounds may be detectable by a microphone. Viscous and thermal relaxation (termed classical absorption), molecular relaxation, and geometric attenuation are considered. Classical absorption is stronger under Martian conditions resulting in sounds in the audible frequencies (20 Hz to 20 kHz) being more strongly attenuated than in the terrestrial environment. The higher frequencies (>3000 Hz) will be severely attenuated as the absorption is frequency dependent. At very low infrasound frequencies (i.e., <10 Hz), attenuation will be mostly due to geometric spreading of the propagating wave front and will therefore be more similar to the terrestrial surface environment. Probable sound sources in the landed environment include wind‐blown dust and sand from large dust storms, dust devils, and possible associated electrostatic discharge. The sounds most likely to be detected will be sounds generated by the lander itself and aeroacoustic noises generated by winds blowing against the lander and its instruments.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    47
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
47
Top 10%
Top 10%
Average
Upload OA version
Are you the author? Do you have the OA version of this publication?