Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Ecotoxicologyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Ecotoxicology
Article . 2003 . Peer-reviewed
License: Springer Nature TDM
Data sources: Crossref
Ecotoxicology
Article . 2004
versions View all 2 versions
addClaim

Gene Expression Profiling in Ecotoxicology

Authors: Terry W, Snell; Sara E, Brogdon; Michael B, Morgan;

Gene Expression Profiling in Ecotoxicology

Abstract

Gene expression profiling is a powerful new end point for ecotoxicology and a means for bringing the genomics revolution to this field. We review the usefulness of gene expression profiling as an end point in ecotoxicology and describe methods for applying this approach to non-model organisms. Since genomes contain thousands of genes representing hundreds of pathways, it is possible to identify toxicant-specific responses from this wide array of possibilities. Stressor-specific signatures in gene expression profiles can be used to diagnose which stressors are impacting populations in the field. Screening for stress-induced genes requires special techniques in organisms without sequenced genomes. These techniques include differential display polymerase chain reaction (DD PCR), suppressive subtractive hybridization PCR (SSH PCR), and representational difference analysis. Gene expression profiling in model organisms like yeast has identified hundreds of genes that are up-regulated in response to various stressors, including several that are well characterized (e.g., hsp78, metallothionein, superoxide dismutase). Using consensus PCR primers from several animal sequences, it is possible to amplify some of these well characterized stress-induced genes from organisms of interest in ecotoxicology. We describe how several stress-induced genes can be grouped into cDNA arrays for rapidly screening samples.

Related Organizations
Keywords

Ecology, Endpoint Determination, Gene Expression Profiling, Animals, Environmental Pollutants, Toxicology, Polymerase Chain Reaction, Biomarkers, Oligonucleotide Array Sequence Analysis

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    114
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
114
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!