<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
pmid: 9758327
Voltage-dependent calcium channels couple electrical signals to cellular responses in excitable cells. Calcium channels are crucial for excitation-secretion coupling in neurons and endocrine cells, and excitation-contraction coupling in muscle. Several pharmacologically and kinetically distinct calcium channel types have been identified at the electrophysiological and molecular levels. This review summarizes the basic properties of voltage-dependent calcium channels, including mechanisms of ion permeation and block, gating kinetics, and modulation by G proteins and second messengers.
Models, Molecular, Protein Conformation, Muscle Proteins, Nerve Tissue Proteins, Membrane Potentials, GTP-Binding Proteins, Multigene Family, Animals, Humans, Calcium, Calcium Channels, Calcium Signaling, Ion Channel Gating
Models, Molecular, Protein Conformation, Muscle Proteins, Nerve Tissue Proteins, Membrane Potentials, GTP-Binding Proteins, Multigene Family, Animals, Humans, Calcium, Calcium Channels, Calcium Signaling, Ion Channel Gating
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 126 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |