Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Biogerontologyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Biogerontology
Article . 2002 . Peer-reviewed
License: Springer Nature TDM
Data sources: Crossref
Biogerontology
Article . 2002
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Mechanisms involved in bone resorption

Authors: Nobuyuki Udagawa;

Mechanisms involved in bone resorption

Abstract

Osteoclasts, which are present only in bone, are multinucleated giant cells with the capacity to resorb mineralized tissues. These osteoclasts are derived from hemopoietic progenitors of the monocyte-macrophage lineage. Osteoblasts or bone marrow-derived stromal cells are involved in osteoclastogenesis through a mechanism involving cell-to-cell contact with osteoclast progenitors. Experiments on the osteopetrotic op/op mouse model have established that a product of osteoblasts, macrophage colony-stimulating factor (M-CSF), regulates differentiation of osteoclast progenitors into osteoclasts. Recent discovery of osteoclast differentiation factor (ODF)/receptor activator of NF-kappa B ligand (RANKL) allowed elucidation of the precise mechanism by which osteoblasts regulate osteoclastic bone resorption. Treatment of osteoblasts with bone-resorbing factors up-regulated expression of RANKL mRNA. In contrast, TNF alpha stimulates osteoclast differentiation in the presence of M-CSF through a mechanism independent of the RANKL system. IL-1 also directly acts on mature osteoclasts as a potentiator of osteoclast activation. In addition, TGF-beta super family members, such as bone morphogenetic proteins (BMPs) strikingly enhanced osteoclast differentiation from their progenitors and survival of mature osteoclasts induced by RANKL. These results suggest that BMP-mediated signals cross-communicate with RANKL-mediated ones in inducing osteoclast differentiation and function.

Related Organizations
Keywords

Membrane Glycoproteins, Receptor Activator of Nuclear Factor-kappa B, RANK Ligand, Bone Morphogenetic Protein 2, Mice, Transforming Growth Factor beta, Bone Morphogenetic Proteins, Animals, Bone Resorption, Cloning, Molecular, Carrier Proteins

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    34
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
34
Average
Top 10%
Top 10%
Upload OA version
Are you the author? Do you have the OA version of this publication?