Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Virus Genesarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Virus Genes
Article . 1998 . Peer-reviewed
License: Springer Nature TDM
Data sources: Crossref
Virus Genes
Article . 1998
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Evolution of Viral DNA-Dependent DNA Polymerases

Authors: Charles W. Knopf;

Evolution of Viral DNA-Dependent DNA Polymerases

Abstract

DNA viruses as their host cells require a DNA-dependent DNA polymerase (Pol) to faithfully replicate their genomic information. Large eukaryotic DNA viruses as well as bacterial viruses encode a specific Pol equipped with a proofreading 3'-5'-exonuclease, and other replication proteins. All known viral Pol belong to family A and family B Pol. Common to all viral Pol is the conservation of the 3'-5'-exonuclease domain manifested by the three sequence motifs Exo I, Exo II, and Exo III. The polymerase domain of family A and B Pol is clearly distinguishable. Family A Pol share 9 distinct consensus sequences, only two of them are convincingly homologous to sequence motif B of family B Pol. The putative sequence motifs A, B, and C of the polymerase domain are located near the C-terminus in family A Pol and more central in family B Pol. Thus, family A Pol show a significant greater spacing between the Exo III motif and the Pol motif A that is especially extended in the case of the mitochondrial Pol gamma. From each host and virus family whenever possible the consensus sequences of two distantly related polymerase species were aligned for assessment of phylogenetic trees, using both maximum parsimony and distance methods, and evaluated by bootstrap analysis. Three alternative methods yielded trees with identical major groupings. A subdivision of viral family B Pol was achieved resulting in a branch with Pol carrying out a protein-primed mechanism of DNA replication, including adenoviruses, bacteriophages and linear plasmids of plant and fungal origin. Archaebacterial Pol and cellular Pol epsilon were consistently found at the base of this branch. Another major branch comprised alpha- and delta-like viral Pol from mammalian herpesviruses, fish lymphocystis disease virus, insect ascovirus, and chlorella virus. Due to a lower branch integrity Pol of T-even bacteriophages, poxviruses, African swine fever virus, fish herpesvirus, and baculoviruses were not clearly resolved and placed in alternate groupings. A composite and rooted tree of family A and B Pol shows that viral Pol with a protein-priming requirement represent the oldest viral Pol species suggesting that the protein-primed mechanism is one of the earliest modes of viral DNA replication.

Related Organizations
Keywords

Evolution, Molecular, Consensus Sequence, Molecular Sequence Data, DNA-Directed DNA Polymerase, Phylogeny

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    84
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
84
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!