Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Chemical Research in...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Chemical Research in Toxicology
Article . 2014 . Peer-reviewed
License: Standard ACS AuthorChoice/Editors’ Choice Usage Agreement
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Chemical Research in Toxicology
Article
License: acs-specific: authorchoice/editors choice usage agreement
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2014
Data sources: PubMed Central
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Mutagenicity and Genotoxicity of (5′S)-8,5′-Cyclo-2′-deoxyadenosine in Escherichia coli and Replication of (5′S)-8,5′-Cyclopurine-2′-deoxynucleosides in Vitro by DNA Polymerase IV, Exo-Free Klenow Fragment, and Dpo4

Authors: Pednekar, Varsha; Weerasooriya, Savithri; Jasti, Vijay P.; Basu, Ashis K.;

Mutagenicity and Genotoxicity of (5′S)-8,5′-Cyclo-2′-deoxyadenosine in Escherichia coli and Replication of (5′S)-8,5′-Cyclopurine-2′-deoxynucleosides in Vitro by DNA Polymerase IV, Exo-Free Klenow Fragment, and Dpo4

Abstract

Reactive oxygen species generate many lesions in DNA, including R and S diastereomers of 8,5'-cyclo-2'-deoxyadenosine (cdA) and 8,5'-cyclo-2'-deoxyguanosine (cdG). Herein, the result of replication of a plasmid containing S-cdA in Escherichia coli is reported. S-cdA was found mutagenic and highly genotoxic. Viability and mutagenicity of the S-cdA construct were dependent on functional pol V, but mutational frequencies (MFs) and types varied in pol II- and pol IV-deficient strains relative to the wild-type strain. Both S-cdA → T and S-cdA → G substitutions occurred in equal frequency in wild-type E. coli, but the frequency of S-cdA → G dropped in pol IV-deficient strain, especially when being SOS induced. This suggests that pol IV plays a role in S-cdA → G mutations. MF increased significantly in pol II-deficient strain, suggesting pol II's likely role in error-free translesion synthesis. Primer extension and steady-state kinetic studies using pol IV, exo-free Klenow fragment (KF (exo(-))), and Dpo4 were performed to further assess the replication efficiency and fidelity of S-cdA and S-cdG. Primer extension by pol IV mostly stopped before the lesion, although a small fraction was extended opposite the lesion. Kinetic studies showed that pol IV incorporated dCMP almost as efficiently as dTMP opposite S-cdA, whereas it incorporated the correct nucleotide dCMP opposite S-cdG 10-fold more efficiently than any other dNMP. Further extension of each lesion containing pair, however, was very inefficient. These results are consistent with the role of pol IV in S-cdA → G mutations in E. coli. KF (exo(-)) was also strongly blocked by both lesions, but it could slowly incorporate the correct nucleotide opposite them. In contrast, Dpo4 could extend a small fraction of the primer to a full-length product on both S-cdG and S-cdA templates. Dpo4 incorporated dTMP preferentially opposite S-cdA over the other dNMPs, but the discrimination was only 2- to 8-fold more proficient. Further extension of the S-cdA:T and S-cdA:C pair was not much different. For S-cdG, conversely, the wrong nucleotide, dTMP, was incorporated more efficiently than dCMP, although one-base extension of the S-cdG:T pair was less efficient than the S-cdG:C pair. S-cdG, therefore, has the propensity to cause G → A transition, as was reported to occur in E. coli. The results of this study are consistent with the strong replication blocking nature of S-cdA and S-cdG, and their ability to initiate error-prone synthesis by Y-family DNA polymerases.

Related Organizations
Keywords

Deoxyadenosines, Nucleotides, Escherichia coli Proteins, Escherichia coli, Deoxyguanosine, DNA Polymerase I, DNA Polymerase beta, Mutagens

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    25
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
25
Top 10%
Average
Top 10%
Green
hybrid