Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Lysine Methylation Mapping of Crenarchaeal DNA-Directed RNA Polymerases by Collision-Induced and Electron-Transfer Dissociation Mass Spectrometry

Authors: Mikel, Azkargorta; Magdalena N, Wojtas; Nicola G A, Abrescia; Felix, Elortza;

Lysine Methylation Mapping of Crenarchaeal DNA-Directed RNA Polymerases by Collision-Induced and Electron-Transfer Dissociation Mass Spectrometry

Abstract

Enzymatic machineries fundamental for information processing (e.g., transcription, replication, translation) in Archaea are simplified versions of their eukaryotic counterparts. This is clearly noticeable in the conservation of sequence and structure of corresponding enzymes (see for example the archaeal DNA-directed RNA polymerase (RNAP)). In Eukarya, post-translational modifications (PTMs) often serve as functional regulatory factors for various enzymes and complexes. Among the various PTMs, methylation and acetylation have been recently attracting most attention. Nevertheless, little is known about such PTMs in Archaea, and cross-methodological studies are scarce. We examined methylation and N-terminal acetylation of endogenously purified crenarchaeal RNA polymerase from Sulfolobus shibatae (Ssh) and Sulfolobus acidocaldarius (Sac). In-gel and in-solution protein digestion methods were combined with collision-induced dissociation (CID) and electron-transfer dissociation (ETD) mass spectrometry analysis. Overall, 20 and 26 methyl-lysines for S. shibatae and S. acidocaldarius were identified, respectively. Furthermore, two N-terminal acetylation sites for each of these organisms were assessed. As a result, we generated a high-confidence data set for the mapping of methylation and acetylation sites in both Sulfolobus species, allowing comparisons with the data previously obtained for RNAP from Sulfolobus solfataricus (Sso). We confirmed that all observed methyl-lysines are on the surface of the RNAP.

Related Organizations
Keywords

Binding Sites, Sulfolobus acidocaldarius, Sequence Homology, Amino Acid, Archaeal Proteins, Lysine, Molecular Sequence Data, Acetylation, DNA-Directed RNA Polymerases, Methylation, Mass Spectrometry, Sulfolobus, Electron Transport, Protein Subunits, Species Specificity, Electrophoresis, Polyacrylamide Gel, Amino Acid Sequence, Chromatography, Liquid

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    11
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
11
Average
Average
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!