Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

Plasmonic Halos—Optical Surface Plasmon Drumhead Modes

Authors: Fan, Ye; Michael J, Burns; Michael J, Naughton;

Plasmonic Halos—Optical Surface Plasmon Drumhead Modes

Abstract

We present the observation and systematic study of a novel optical phenomenon, a "plasmonic halo", wherein surface plasmons optically excited on circular silver microcavities form confined drumhead modes that, under resonant conditions, emanate colorful far-field radiation from their perimeter boundaries. We demonstrate both experimentally and theoretically that such circular microcavities integrated with perimeter step gaps can generate surface plasmon cavity modes which modulate optical transmission/emission through/from the device, yielding the plasmonic halo effect. Via the tuning of geometric and/or material parameters, optical properties of this device can be manipulated in the visible range, leading to potential applications in biomedical plasmonics and discrete optical filtering, among others.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    19
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
19
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!