Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Nano Lettersarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Nano Letters
Article
Data sources: UnpayWall
Nano Letters
Article . 2011 . Peer-reviewed
Data sources: Crossref
Nano Letters
Article . 2012
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Ferroelectric Control of Magnetic Anisotropy

Authors: Mardana, Abhijit; Ducharme, Stephen; Adenwalla, Shireen;

Ferroelectric Control of Magnetic Anisotropy

Abstract

We demonstrate unambiguous evidence of the electric field control of magnetic anisotropy in a wedge-shaped Co film of varying thickness. A copolymer ferroelectric of 70% vinylidene fluoride with 30% trifluoroethylene, P(VDF-TrFE) overlays the Co wedge, providing a large switchable electric field. As the ferroelectric polarization is switched from up to down, the magnetic anisotropy of the Co films changes by as much as 50%. At the lowest Co thickness the magnetic anisotropy switches from out-of-plane to in-plane as the ferroelectric polarization changes from up to down, enabling us to rotate the magnetization through a large angle at constant magnetic field merely by switching the ferroelectric polarization. The large mismatch in the stiffness coefficients between the polymer ferroelectric and metallic ferromagnet excludes typical magnetoelectric strain coupling; rather, the magnetic changes arise from the large electric field at the ferroelectric/ferromagnet interface.

Keywords

magnetic anisotropy, Physics, polymer ferroelectric, 530, Magnetoelectric coupling, electric field control of magnetization

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    105
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
105
Top 10%
Top 10%
Top 10%
bronze