<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
doi: 10.1021/nl0484550
pmid: 16159199
We have chemically immobilized alkaline phosphatase molecules onto the apex of a tip of an atomic force microscope. When the substrate BCIP is dephosphorylated by alkaline phosphatase, it will precipitate in the presence of NBT. By bringing the tip in the vicinity of a suitable sample, we could locally deposit this complex on the sample. Thus we combined the activity of an enzyme with the accuracy in positioning a tip in scanning probe microscopy to demonstrate a novel technique referred to as enzyme-assisted nanolithography. By use of other enzymes, this method will open the possibility to chemically modify surfaces on a nanometer scale.
Nanotechnology, Alkaline Phosphatase, Enzymes, Immobilized, Microscopy, Atomic Force
Nanotechnology, Alkaline Phosphatase, Enzymes, Immobilized, Microscopy, Atomic Force
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 36 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |