
doi: 10.1021/js9700661
pmid: 9269864
Replacement of traditional solvents with "environmentally benign" carbon dioxide is receiving increased attention in pharmaceutical processing. Among the reported applications, particle formation with dense carbon dioxide and the "clean" synthesis of drug compounds using carbon dioxide as a reaction medium hold immense potential for large-scale application in the pharmaceutical industry. This paper provides an overview of these rapidly emerging technologies along with examples of the wide variety of relatively contaminant-free pharmaceutical compounds that have been processed via these technologies on a laboratory scale. Challenges facing successful implementation in practice include demonstration of continuous production and harvesting of particles with desired and reproducible product characteristics. Mathematical models aimed at a better fundamental understanding of the underlying thermophysical phenomena are essential for rational design and scale-up of these technologies.
Models, Chemical, Chemistry, Pharmaceutical, Solvents, Carbon Dioxide, Crystallization
Models, Chemical, Chemistry, Pharmaceutical, Solvents, Carbon Dioxide, Crystallization
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 368 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
