Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Pharmaceu...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Pharmaceutical Sciences
Article . 1996 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Precipitation of Proteins in Supercritical Carbon Dioxide

Authors: M A, Winters; B L, Knutson; P G, Debenedetti; H G, Sparks; T M, Przybycien; C L, Stevenson; S J, Prestrelski;

Precipitation of Proteins in Supercritical Carbon Dioxide

Abstract

Supercritical CO2 was used as an antisolvent to form protein particles that exhibited minimal loss of activity upon reconstitution. Organic protein solutions were sprayed under a variety of operating conditions into the supercritical fluid, causing precipitation of dry, microparticulate (1-5 microns) protein powders. Three proteins were studied: trypsin, lysozyme, and insulin. Amide I band Raman spectra were used to estimate the alpha-helix and beta-sheet structural contents of native and precipitate powders of each protein. Analysis of the Raman spectral revealed minimal (lysozyme), intermediate (trypsin), and appreciable (insulin) changes in secondary structure with respect to the commercial starting materials. The perturbations in secondary structure suggest that the most significant event during supercritical fluid-induced precipitation involved the formation of beta-sheet structures with concomitant decreases of alpha-helix. Amide I band Raman and Fourier-transform infrared (FTIR) spectra indicate that higher operating temperatures and pressures lead to more extensive beta-sheet-mediated intermolecular interactions in the precipitates. Raman and FTIR spectra of redissolved precipitates are similar to those of aqueous commercial proteins, indicating that conformational changes were reversible upon reconstitution. These results suggest that protein precipitation in supercritical fluids can be used to form particles suitable for controlled release, direct aerosol delivery to the lungs, and long-term storage at ambient conditions.

Related Organizations
Keywords

Chemical Phenomena, Chemistry, Physical, Proteins, Carbon Dioxide, Spectrum Analysis, Raman, Protein Structure, Secondary, Solutions, Spectroscopy, Fourier Transform Infrared, Chemical Precipitation, Dimethyl Sulfoxide, Muramidase, Trypsin

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    181
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
181
Top 10%
Top 1%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!