
A fractional diffusion equation based on Riemann-Liouville fractional derivatives is solved exactly. The initial values are given as fractional integrals. The solution is obtained in terms of $H$-functions. It differs from the known solution of fractional diffusion equations based on fractional integrals. The solution of fractional diffusion based on a Riemann-Liouville fractional time derivative does not admit a probabilistic interpretation in contrast with fractional diffusion based on fractional integrals. While the fractional initial value problem is well defined and the solution finite at all times its values for $t\to 0$ are divergent.
11 pages, Latex
Statistical Mechanics (cond-mat.stat-mech), FOS: Physical sciences, Disordered Systems and Neural Networks (cond-mat.dis-nn), Condensed Matter - Disordered Systems and Neural Networks, Condensed Matter - Statistical Mechanics
Statistical Mechanics (cond-mat.stat-mech), FOS: Physical sciences, Disordered Systems and Neural Networks (cond-mat.dis-nn), Condensed Matter - Disordered Systems and Neural Networks, Condensed Matter - Statistical Mechanics
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 216 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
