Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Vibrational Spectroscopy and Modeling of the Surface and Subsurface of Ice and of Ice−Adsorbate Interactions

Authors: J. P. Devlin; V. Buch;

Vibrational Spectroscopy and Modeling of the Surface and Subsurface of Ice and of Ice−Adsorbate Interactions

Abstract

FT-IR spectroscopic results in conjunction with simulations show that ice nanocrystals, formed at 70 K and annealed at 140 K, consist of a crystalline core, a highly irregular (though relatively smooth) crystalline surface, and a slightly distorted subsurface region connecting the surface and bulklike interior ice. Adsorbates on the nanocrystalline surface can be divided into three classes in terms of their effect on the three regions of the nanocrystals: weak adsorbates that influence the surface only; strong adsorbates that reverse the restructuring of the ice surface and thereby increase the order of the subsurface region; penetrating strong adsorbates that completely convert the nanocrystals to hydrates at cryogenic temperatures. To the extent that these properties of crystalline nanoparticles reflect the characteristics of the surface region of bulk ice, they must be recognized in attempts to understand chemistry at the ice surface.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    78
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
78
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!