<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
doi: 10.1021/jp904392z
pmid: 19594156
Vertical ionization energies of 9-H adenine and 9-methyl adenine have been calculated with the following, ab initio, electron propagator methods: the outer valence Green's function (OVGF), partial third-order theory (P3), and the third-order algebraic diagrammatic construction, or ADC(3). Basis set effects have been systematically examined. All methods predict near degeneracy in the pi(2)-n(1) and pi(3)-n(2) pairs of cationic, adenine final states and larger splittings of the corresponding, cationic states of 9-methyl adenine. P3 results for adenine predict the following order of the first six final states: pi(1), n(1), pi(2), n(2), pi(3), n(3). Coupled-cluster calculations on the first three cationic states of adenine confirm these predictions. OVGF and ADC(3) calculations reverse the order of the second and third states and of the fourth and fifth states. All results confirm previous interpretations of experiments in which the second and third spectral bands correspond to the aforementioned pairs of final states and disagree with a recent reassignment based on time-resolved photoelectron spectra. Lower ionization energies and larger splittings in the methylated molecule are interpreted in terms of phase relationships in the Dyson orbitals. ADC(3) results confirm the qualitative validity of the one-electron approximation for the first six final states of both molecules and disclose its inadequacies for higher ionization energies.
Adenine, Quantum Theory, Thermodynamics, Electrons
Adenine, Quantum Theory, Thermodynamics, Electrons
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 21 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |