
doi: 10.1021/jp810473m
pmid: 19331342
We estimate theoretically the strength of DNA-DNA electrostatic friction forces emerging upon a slow drag of one DNA over another one in a close juxtaposition. For ideally helical DNA duplexes, this friction occurs due to correlations in electrostatic potential near the DNA surface. The latter originate from the intrinsic helicity of DNA phosphates and adsorbed cations on a scale of 3.4 nm. They produce positive-negative charge interlocking along the DNA-DNA contact. For realistic nonideally helical DNAs, where electrostatic potential barriers become decorrelated due to accumulation of mismatches in DNA structure, DNA-DNA frictional forces are strongly impeded. We discuss possibilities of probing the DNA-DNA intermolecular interactions in strongly confined DNA superhelical plies, as obtained in single-molecule experiments.
Magnetics, Friction, Surface Properties, Static Electricity, Nucleic Acid Conformation, DNA
Magnetics, Friction, Surface Properties, Static Electricity, Nucleic Acid Conformation, DNA
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 18 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
