
doi: 10.1021/jp300160g
pmid: 22697463
In this work, we have explored the validity of the hypotheses on which rest the Hammett's approach to quantify the substituent effect on a reaction center, by applying two DFT energy decomposition schemes. This is performed by studying the change in the total electronic energy, ΔΔE, associated with a proton transfer isodesmic equilibrium. For this reaction, two sets of substituted benzoic acids and their corresponding benzoate anions have been considered. One of these sets contains para- and meta-substitutions, whereas the other one includes ortho-substituted benzoic acids. For each case, the gas phase change in the total electronic energy has been calculated, and two DFT energy decomposition schemes have been applied. The experimental σ(X) was found to be nearly proportional to the computed ΔΔE. The results for the para- and meta-substituted benzoic acids lead to the conclusion that it is possible to treat separately and, in an additive manner, the electrostatic and steric contributions; and also that the Hammett constant depends mainly on the electronic contributions to the free energy, while the steric contribution is negligible. However, the results for the ortho-substituted cases lead to the conclusion, as was assumed by Hammett, that there are significant qualitative differences between the effects on a reaction site of substituents in the meta- and para-positions and those in the ortho-position.
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 32 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
