<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
doi: 10.1021/jp110672u
handle: 10773/6111
Wide band gap niobium oxides are particularly important for electronic device applications. Two types of NbO powders were sintered between 300 and 1100 °C. The structural characterization of the pellets, performed by X-ray diffraction measurements and Raman spectroscopy, revealed the appearance of the NbO and T-, B-, and H-Nb2O5 polymorphs, depending on the sintering temperature. The optical characterization was complemented with absorption measurements and photoluminescence, where it was possible to identify a bandgap of 3.5 eV. A strong dependence of luminescence on the sintering temperature and therefore of the niobium oxide crystalline phases nature was observed. The influence of the morphological and structural characteristics on the dielectrical properties, at room temperature and in the low frequency range (<100 MHz), was studied. The sample with the H-Nb2O5 polymorph presents higher dielectric constant (∼55) than the samples with T- and B-Nb2O5 (∼25).
PL, XRD, Dielectric measurements, NbO, SEM, Nb2O5, Raman
PL, XRD, Dielectric measurements, NbO, SEM, Nb2O5, Raman
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 67 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |