
doi: 10.1021/jp0600864
pmid: 16737252
The photochemistry of low lying excited states of six different fluorinated bromobenzenes has been investigated by means of femtosecond laser spectroscopy and high level ab initio CASSCF/CASPT2 quantum chemical calculations. The objective of the work was to investigate how and to what extent light substituents, position on the benzene ring and number, would influence the dissociation mechanism of bromobenzene. In general, the actual position of a fluorine atom affects the dissociation rate to a less extent than the number of fluorine atoms. A clear connection between a lowering of a repulsive pisigma relative to a bound pipi state and the number of fluorine substituents exists, and the previously suggested model of coupling between dissociation rate and relative location of bound and repulsive state still holds for these molecules. A more elaborate examination of the electronic structure of the excited states in bromobenzenes than previously reported is presented.
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 37 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
