Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Structure-Based Design of a Benzodiazepine Scaffold Yields a Potent Allosteric Inhibitor of Hepatitis C NS5B RNA Polymerase

Authors: Koen, Vandyck; Maxwell D, Cummings; Origène, Nyanguile; Carlo W, Boutton; Sandrine, Vendeville; David, McGowan; Benoit, Devogelaere; +9 Authors

Structure-Based Design of a Benzodiazepine Scaffold Yields a Potent Allosteric Inhibitor of Hepatitis C NS5B RNA Polymerase

Abstract

HCV NS5B polymerase, an essential and virus-specific enzyme, is an important target for drug discovery. Using structure-based design, we optimized a 1,5-benzodiazepine NS5B polymerase inhibitor chemotype into a new sulfone-containing scaffold. The design yielded potent inhibitor (S)-4c (K(D) = 0.79 nM), which has approximately 20-fold greater affinity for NS5B than its carbonyl analogue (R)-2c.

Related Organizations
Keywords

Models, Molecular, Benzodiazepines, Allosteric Regulation, Drug Design, Molecular Conformation, Hepacivirus, Enzyme Inhibitors, Viral Nonstructural Proteins, Crystallography, X-Ray, RNA-Dependent RNA Polymerase

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    58
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
58
Top 10%
Top 10%
Top 10%
Related to Research communities
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!