Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Agricultu...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
PolyPublie
Article . 2011
Data sources: PolyPublie
Journal of Agricultural and Food Chemistry
Article . 2011 . Peer-reviewed
Data sources: Crossref
versions View all 4 versions
addClaim

Preparation of Lignopolyols from Wheat Straw Soda Lignin

Authors: Ahvazi, Behzad; Wojciechowicz, Olivia; Ton-That, Tan-Minh; Hawari, Jalal;

Preparation of Lignopolyols from Wheat Straw Soda Lignin

Abstract

Wheat straw soda lignin was modified and characterized by several qualitative and quantitative methods such as (31)P NMR spectroscopy to evaluate its potential as a substitute for polyols in view of polyurethane applications. Chemical modification of the lignin was achieved with propylene oxide to form lignopolyol derivatives. This was performed by a two-step reaction of lignin with maleic anhydride followed by propylene oxide and by direct oxyalkylation under acidic and alkaline conditions. The physical and chemical properties of lignopolyols from each method and the subsequent chain-extended hydroxyl groups were evaluated. Direct oxyalkylation of lignin under alkaline conditions was found to be more efficient than acidic conditions and more effective than the two-step process for preparing lignopolyol with higher aliphatic hydroxyl contents.

Country
Canada
Keywords

Magnetic Resonance Spectroscopy, wheat straw, Polymers, soda lignin, lignopolyl, propylene oxide, Hydrogen-Ion Concentration, Lignin, oxyalkylation, FTIR, Spectroscopy, Fourier Transform Infrared, Epoxy Compounds, characterization, 31P NMR spectroscopy, Triticum, Maleic Anhydrides

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    113
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
113
Top 1%
Top 10%
Top 10%
Green
bronze