Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Purification, Identification, and Characterization of Peanut Isocitrate Lyase

Authors: Ping-Lin Ong; Shing-Fei Lin; Robin Y.-Y. Chiou; Chun-Ru Jhou;

Purification, Identification, and Characterization of Peanut Isocitrate Lyase

Abstract

Isocitrate lyase (ICL, EC 4.1.3.1) is commonly present in oil-rich seeds in catalyzing the cleavage of isocitrate to glyoxylate and succinate and plays an essential role in lipid metabolism and gluconeogenesis. When peanut kernels (Tainan 14) were germinated at 30 degrees C, the cotyledon ICL activities increased substantially in the initial 4 days, and the 4-day-germinated cotyledons were subjected to ICL purification by Tris-HCl buffer extraction, heat treatment at 55 degrees C for 1 h, (NH4)2SO4 fractionation at 25-35% saturation, DEAE-cellulose chromatography, and Sephacryl S-300 gel filtration. A single 64 kDa SDS-PAGE protein band was obtained with 7.7% recovery and 37.5-fold purity. It was identified as ICL by LC-MS/MS analyses and Mascot Search with 494 as the highest Probability Based Mowse Score (PBMS). On the basis of the sequence of the homologous ICL of Glycine max, 26% of the peptide sequences of the peanut ICL were identified. During gel filtration, separation of peanut catalase (identified by LC-MS/MS and Mascot Search with 405 as the highest PBMS) from peanut ICL was achieved. The highest measured peanut ICL enzymatic activities were obtained at 45 degrees C and pH 7.0-7.8, respectively. The enzyme activities were stable (>80%) as stored for 8 h at 30 degrees C, 15 days at 4 degrees C, or 60 days at -25 degrees C. As affected by the supplements in the reactants for activity determinations, ICL activity was not affected by glucose up to 4%, sucrose up to 5%, or ethanol up to 8.33%.

Related Organizations
Keywords

Hot Temperature, Arachis, Enzyme Stability, Seeds, Chromatography, Gel, Hydrogen-Ion Concentration, Isocitrate Lyase, Chromatography, DEAE-Cellulose

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!