Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

Evaporative Light-Scattering Analysis of Sulforaphane in Broccoli Samples: Quality of Broccoli Products Regarding Sulforaphane Contents

Authors: Kiyotaka, Nakagawa; Toshiko, Umeda; Ohki, Higuchi; Tsuyoshi, Tsuzuki; Toshihide, Suzuki; Teruo, Miyazawa;

Evaporative Light-Scattering Analysis of Sulforaphane in Broccoli Samples: Quality of Broccoli Products Regarding Sulforaphane Contents

Abstract

Broccoli sulforaphane has received attention as a possible anticarcinogen. Sulforaphane analysis is difficult due to the lack of a chromophore for spectrometric detection. Hence, we developed a method for determining sulforaphane by using high-performance liquid chromatography (HPLC) coupled with an evaporative light-scattering detector (ELSD). Sulforaphane was extracted from acid-hydrolyzed broccoli samples, followed by solid-phase extraction and reversed-phase HPLC. Sulforaphane was detected by ELSD and concurrently identified by electrospray ionization time-of-flight mass spectrometry. The recovery of sulforaphane from broccoli samples was above 95%. The detection limit was 0.5 mug. The present method was sensitive enough to determine sulforaphane in mature broccoli, broccoli sprouts, and commercial broccoli products. Sulforaphane concentration in broccoli sprout (1153 mg/100 g dry weight) was about 10 times higher than that of mature broccoli (44-171 mg/100 g dry weight). Therefore, the broccoli sprout is recommended as a source of sulforaphane-rich products. In contrast, we found that sulforaphane could not be detected in most of broccoli products, suggesting present commercial broccoli products having low quality.

Related Organizations
Keywords

Spectrometry, Mass, Electrospray Ionization, Light, Isothiocyanates, Hydrolysis, Sulfoxides, Scattering, Radiation, Brassica, Hydrogen-Ion Concentration, Chromatography, High Pressure Liquid, Thiocyanates

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    77
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
77
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!