
Accelerator mass spectrometry (AMS) is a widely-used technique with multiple applications, including geology, molecular biology and archeology. In order to achieve a high dynamic range, AMS requires tandem accelerators and large magnets, which thus confines it to big laboratories. Here we propose interferometric mass spectrometry (Interf-MS), a novel method of mass separation which uses quantum interference. Interf-MS employs the wave-like properties of the samples, and as such is complementary to AMS, in which samples are particle-like. This complementarity has two significant consequences: (i) in Interf-MS separation is performed according to the absolute mass $m$, and not to the mass-to-charge ratio $m/q$, as in AMS; (ii) in Interf-MS the samples are in the low-velocity regime, in contrast to the high-velocity regime used in AMS. Potential applications of Interf-MS are compact devices for mobile applications, sensitive molecules that break at the acceleration stage and neutral samples which are difficult to ionise.
Updated to the published version, J. Am. Soc. Mass Spectrom. 2023
Quantum Physics, FOS: Physical sciences, Quantum Physics (quant-ph)
Quantum Physics, FOS: Physical sciences, Quantum Physics (quant-ph)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 3 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
