
pmid: 31642667
A molecular signal displayed on the external surface of one population of vesicles was used to trigger a catalytic process on the inside of a second population of vesicles. The key recognition event is the transfer of a protein (NeutrAvidin) bound to vesicles displaying desthiobiotin to vesicles displaying biotin. The desthiobiotin-protein complex was used to anchor a synthetic transducer in the outer leaflet of the vesicles, and when the protein was displaced, the transducer translocated across the bilayer to expose a catalytic headgroup to the internal vesicle solution. As a result, an ester substrate encapsulated on the inside of this second population of vesicles was hydrolyzed to give a fluorescence output signal. The protein has four binding sites, which leads to multivalent interactions with membrane-anchored ligands and very high binding affinities. Thus, biotin, which has a dissociation constant 3 orders of magnitude higher than desthiobiotin, did not displace the protein from the membrane-anchored transducer, and membrane-anchored biotin displayed on the surface of a second population of vesicles was required to generate an effective input signal.
Phosphatidylethanolamines, Lipid Bilayers, Liposomes, Phosphatidylcholines, Biotin, Artificial Cells, Avidin, Signal Transduction
Phosphatidylethanolamines, Lipid Bilayers, Liposomes, Phosphatidylcholines, Biotin, Artificial Cells, Avidin, Signal Transduction
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 41 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
