<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
doi: 10.1021/ja960288l
A measure of the strength of a low barrier hydrogen bond (LBHB) in apolar organic media was obtained using synthetic molecules derived from Kemp's triacid. The structures feature unusually rigid conformations that enforce intramolecular hydrogen bonds in a dicarboxylic acid, its corresponding acid-amide and their respective conjugate bases. Analysis of proton and deuterium NMR spectra established the formation of a LBHB in the conjugate base of the diacid and a conventional hydrogen bond in the conjugate base of the acid-amide. Through deprotonation equilibria with organic bases, it was determined that the conjugate base of the diacid was more stable than the conjugate base of the acid-amide by 2.4 kcal/mol in benzene and 1.4 kcal/mol in dichloromethane. These figures set the upper limits for the free energy of the additional stabilization arising from the LBHB at 25 °C. This value is far lower than many estimates but is closer to the recent determinations of Schwartz and Drueckhammer [J. Am. Chem. Soc. 1...
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 62 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |