
doi: 10.1021/ja4116617
pmid: 24548066
For a long time, low-barrier hydrogen bonds (LBHBs) have been proposed to exist in many enzymes and to play an important role in their catalytic function, but the proof of their existence has been elusive. The transient formation of an LBHB in a protein system has been detected for the first time using neutron diffraction techniques on a photoactive yellow protein (PYP) crystal in a study published in 2009 (Yamaguchi, S.; et al. Proc. Natl. Acad. Sci. U.S.A. 2009, 106, 440-444). However, very recent theoretical studies based on electronic structure calculations and NMR resonance experiments on PYP in solution (Saito, K.; et al. Proc. Natl. Acad. Sci. U.S.A. 2012, 109, 167-172) strongly indicate that there is not such an LBHB. By means of electronic structure calculations combined with the solution of the nuclear Schrödinger equation, we analyze here under which conditions an LBHB can exist in PYP, thus leading to a more reasonable and conciliating understanding of the above-mentioned studies.
Bacterial Proteins, Protein Conformation, Solvents, Hydrogen Bonding, Molecular Dynamics Simulation, Photoreceptors, Microbial
Bacterial Proteins, Protein Conformation, Solvents, Hydrogen Bonding, Molecular Dynamics Simulation, Photoreceptors, Microbial
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 50 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
