
doi: 10.1021/ja308490a
pmid: 23088280
High pressure can fundamentally alter the bonding patterns of light elements and their compounds, leading to the unexpected formation of materials with unusual chemical and physical properties. Using an unbiased structure search method based on particle-swarm optimization algorithms in combination with density functional theory calculations, we investigate the phase stabilities and structural changes of various Li-B systems on the Li-rich regime under high pressures. We identify the formation of four stoichiometric lithium borides (Li(3)B(2), Li(2)B, Li(4)B, and Li(6)B) having unforeseen structural features that might be experimentally synthesizable over a wide range of pressures. Strikingly, it is found that the B-B bonding patterns of these lithium borides evolve from graphite-like sheets in turn to zigzag chains, dimers, and eventually isolated B ions with increasing Li content. These intriguing B-B bonding features are chemically rationalized by the elevated B anionic charges as a result of Li→B charge transfer.
Models, Molecular, Pressure, Lithium, Boron
Models, Molecular, Pressure, Lithium, Boron
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 122 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
