Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of the Ameri...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
I.R. "OLYMPIAS"
Article . 2006
Data sources: I.R. "OLYMPIAS"
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Pure@Namur
Article . 2006
Data sources: Pure@Namur
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of the American Chemical Society
Article . 2006 . Peer-reviewed
Data sources: Crossref
versions View all 8 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Clay−Fulleropyrrolidine Nanocomposites

Authors: Gournis D; Jankovic L; Maccallini E; Benne D; Rudolf P; Colomer J. F; Sooambar C; +6 Authors

Clay−Fulleropyrrolidine Nanocomposites

Abstract

In this work, we describe the insertion of a water-soluble bisadduct fulleropyrrolidine derivative into the interlayer space of three layered smectite clays. The composites were characterized by a combination of powder X-ray diffraction, transmission electron microscopy, X-ray photoemission and FTIR spectroscopies, and laser flash photolysis measurements. The experiments, complemented by computer simulations, give insight into the formation process, structural details, and properties of the fullerene/clay nanocomposites. The reported composite materials constitute a new hybrid system, where C(60) differs from its crystals or its solutions, and open new perspectives for the design and construction of novel C(60)-based organic/clay hybrid materials.

Countries
Greece, Italy, Italy, Belgium, Italy, Netherlands
Keywords

SMECTITE CLAYS, Pyrrolidines, SURFACE, energy minimization, smectite clays, EXCITED-STATE, ENERGY MINIMIZATION, Nanocomposites, c-60, SELF-ASSEMBLED MONOLAYERS, MCM-41 MATERIALS, Microscopy, Electron, Transmission, X-Ray Diffraction, excited-state, Spectroscopy, Fourier Transform Infrared, surface, Computer Simulation, self-assembled monolayers, azomethine ylides, FULLERENE DERIVATIVES, PILLARED CLAY, pillared clay, mcm-41 materials, AZOMETHINE YLIDES, fullerene derivatives, ", Clay, Aluminum Silicates, Fullerenes, C-60

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    45
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
45
Top 10%
Top 10%
Top 10%
Green
bronze