
doi: 10.1021/ja054568p
pmid: 16305194
As the conversion between the monoionic (1) and diionic (2) form of the phosphate occurs, the phosphorylated peptides or proteins can not only cause the formation of a hydrogen bond between the phosphate group and the amide group but also change the strength of the hydrogen bond to form low-barrier hydrogen bonds (LBHBs). This reversible protonation of the phosphate group, which changes both the electrostatic properties of the phosphate group and the strength of the hydrogen bond, provides a possible mechanism in regulating protein function.
Phosphopeptides, Magnetic Resonance Spectroscopy, Molecular Structure, Humans, Hydrogen Bonding, tau Proteins, Amides, Phosphates
Phosphopeptides, Magnetic Resonance Spectroscopy, Molecular Structure, Humans, Hydrogen Bonding, tau Proteins, Amides, Phosphates
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 45 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
