
doi: 10.1021/ja0479843
pmid: 15237992
The complex formed between 4-methylpyridine and pentachlorophenol (4MPPCP) crystallizes in a triclinic space group. If the same complex is synthesized from deuterated pentachlorophenol (4MPPCP-d1), it crystallizes in an entirely different monoclinic polymorph. Solid-state NMR of samples synthesized with a full range of deuteration levels, crystallized from solution or the melt, and in the presence or absence of seeds confirms that the isotopomers indeed have different thermodynamically stable crystal structures. The phenomenon is apparently due to very different hydrogen bond strengths between the two polymorphs.
Kinetics, Magnetic Resonance Spectroscopy, Pentachlorophenol, Pyridines, Thermodynamics, Hydrogen Bonding, Deuterium
Kinetics, Magnetic Resonance Spectroscopy, Pentachlorophenol, Pyridines, Thermodynamics, Hydrogen Bonding, Deuterium
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 47 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
