Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ University of Califo...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of the American Chemical Society
Article . 2004 . Peer-reviewed
Data sources: Crossref
versions View all 3 versions
addClaim

Alkylating Agents Stronger than Alkyl Triflates

Authors: Kato, Tsuyoshi; Stoyanov, Evgenii; Geier, Jens; Grützmacher, Hansjörg; Reed, Christopher A;

Alkylating Agents Stronger than Alkyl Triflates

Abstract

A new class of potent electrophilic "R(+)" alkylating agents has been developed using weakly nucleophilic carborane anions as leaving groups. These reagents, R(CHB(11)Me(5)X(6)) (R = Me, Et, and i-Pr; X = Cl, Br), are prepared via metathesis reactions with conventional alkylating agents such as alkyl triflates, using the high oxophilicity of silylium ion-like species, Et(3)Si(carborane), as the driving force to obtain increased alkyl electrophilicity. The crystal structure of the isopropyl reagent, i-Pr(CHB(11)Me(5)Br(6)), has been determined, revealing covalence in the alkyl-carborane bonding. This contrasts with the free i-Pr(+) carbocation observed when the anion is less coordinating (e.g. Sb(2)F(11)(-)) or with tertiary alkyl centers, as in [tert-butyl][carborane] salts. In solution, the reagents exist as equilibrating isomers with the alkyl group at the 7-11 or 12 halide positions of the CB(11) icosahedral carborane anion. These alkylating agents are so electrophilic that they (a) react with alkanes at or below room temperature via hydride extraction to produce carbenium ions, (b) alkylate benzene without a Friedel-Crafts catalyst to give arenium ions, and (c) alkylate electron-deficient phosphorus compounds that are otherwise inert to conventional alkylating agents such as methyl triflate.

Country
United States
Keywords

Mesylates, Alkylating Agents, Crystallography, Magnetic Resonance Spectroscopy, Molecular Structure, Spectrophotometry, Infrared, Organic Chemistry, General Chemistry, Crystallography, X-Ray, Hydrocarbons, Chlorinated, Hydrocarbons, Brominated, Inorganic Chemistry, Engineering, Chemical sciences, Spectrophotometry, Chemical Sciences, X-Ray, Hydrocarbons, Chlorinated, Brominated, Infrared, Boranes

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    56
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
56
Top 10%
Top 10%
Top 10%
Green
bronze