
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>doi: 10.1021/ja040191w
pmid: 15783207
A novel electron microscopy specimen protocol shows that the presumed phospholipid bilayer membrane ribbons that wind helically to form the cylinders known as "tubules" are actually flattened tubes. These flattened tubes are alternatively found with a helical twist about the tube's long axis or occasionally flat with no winding or twist. Flat, cylindrically wound and axially twisted segments are routinely found along a single tube's length, and at the helically wound and axially twisted segment junctions, the chiral sense of the structure often, but not always, changes chiral sense.
Diynes, Lipid Bilayers, Microscopy, Electron, Scanning, Phosphatidylcholines, Freeze Fracturing, Muramidase, Microscopy, Atomic Force
Diynes, Lipid Bilayers, Microscopy, Electron, Scanning, Phosphatidylcholines, Freeze Fracturing, Muramidase, Microscopy, Atomic Force
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 15 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
