Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

Tracing Kinetic Intermediates during Ligand Binding

Authors: Tanja, Mittag; Brian, Schaffhausen; Ulrich L, Günther;

Tracing Kinetic Intermediates during Ligand Binding

Abstract

Specific protein-ligand interactions are central to biological control. Although structure determination provides important insight into these interactions, it does not address dynamic events that occur during binding. While many biophysical techniques can provide a global view of these dynamics, NMR can be used to derive site-specific dynamics at atomic resolution. Here we show how NMR line shapes can be analyzed to identify long-lived kinetic intermediates for individual amino acids on the reaction pathway for a protein-ligand interaction. Different ligands cause different intermediate states. The lifetimes of these states determine the specificity of binding. This novel approach provides a direct, site-specific visualization of the kinetic mechanism of protein-ligand interactions.

Related Organizations
Keywords

Models, Molecular, Antigens, Polyomavirus Transforming, Titrimetry, Ligands, Protein Structure, Tertiary, src Homology Domains, Kinetics, Phosphatidylinositol 3-Kinases, src-Family Kinases, Receptors, Platelet-Derived Growth Factor, Phosphotyrosine, Nuclear Magnetic Resonance, Biomolecular

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    31
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
31
Top 10%
Top 10%
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!