Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Solvent Nucleophilicity

Authors: Shinya, Minegishi; Shinjiro, Kobayashi; Herbert, Mayr;

Solvent Nucleophilicity

Abstract

The rates of the reactions of benzhydrylium ions (diarylcarbenium ions) with solvent mixtures of variable composition (water/acetonitrile, methanol/acetonitrile, ethanol/acetonitrile, ethanol/water, and trifluoroethanol/water) have been determined photometrically by conventional UV-vis spectroscopy, stopped-flow methods, and laser flash techniques. It has been shown that the first-order rate constants follow the previously published relationship log k(20 degrees C) = s(N + E), where E is an empirical electrophilicity parameter, N is an empirical nucleophilicity parameter, and s is a nucleophile-specific slope parameter. From plots of log k versus E of the benzhydrylium ions are derived the solvent nucleophilicity parameters s and N, the latter of which are designated as N1 to emphasize that their use in the quoted correlation equation gives rise to first-order rate constants. A linear correlation between N1 and Kevill's solvent nucleophilicity NT based on S-methyldibenzothiophenium ions is reported, which allows one to interconvert the two sets of data. Because the N1 values are directly comparable to the previously reported nucleophilicity parameters N for pi-systems (www.cup.uni-muenchen.de/oc/mayr/), the systematic design of Friedel-Crafts reactions with solvolytically generated carbocations becomes possible.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    228
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
228
Top 1%
Top 1%
Top 1%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!