<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
doi: 10.1021/ja030185k
pmid: 12904047
Photodissociation of both fluorobenzene and d(5)-fluorobenzene at 193 nm under collision-free conditions has been studied in separate experiments using multimass ion imaging techniques. HF and DF eliminations were found to be the major dissociation channels. Small amounts of photofragments, C(6)H(4)F and C(6)D(4)F, corresponding to H and D atom eliminations were also observed. Dissociation rate and fragment translational energy distribution suggest that HF (DF) and H (D) atom elimination reactions occur in the ground electronic state. The potential energy surface obtained from ab initio calculations indicates that the four-center reaction in the ground electronic state is the major dissociation mechanism for the HF and DF eliminations. A comparison with photodissociation of benzene has been made.
branching ratios, tri-t-butylbenzenes, dissociation rate, h bond splits, electronic-state, excited aromatic-molecules, 266 nm, rate, constants, c-c, unimolecular decomposition
branching ratios, tri-t-butylbenzenes, dissociation rate, h bond splits, electronic-state, excited aromatic-molecules, 266 nm, rate, constants, c-c, unimolecular decomposition
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 27 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |