Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Archivio della ricer...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of the American Chemical Society
Article . 2003 . Peer-reviewed
Data sources: Crossref
CNR ExploRA
Article . 2003
Data sources: CNR ExploRA
versions View all 11 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

“Oscillating” Metallocene Catalysts: What Stops the Oscillation?

Authors: BUSICO, VINCENZO; Van Axel Castelli Valeria; Aprea Paola; CIPULLO, ROBERTA; Segre Annalaura; TALARICO, GIOVANNI; VACATELLO, MICHELE;

“Oscillating” Metallocene Catalysts: What Stops the Oscillation?

Abstract

The 150 MHz (13)C NMR microstructural analysis of polypropylene samples produced with two representative "oscillating" metallocene catalysts of largely different steric hindrance, namely [(2-(3,5-di-tert-butyl-4-methoxyphenyl)indenyl)(2)ZrP](+) and [(2-phenylindenyl)(2)ZrP](+) (P = polymeryl), and the implications on the origin of the stereocontrol are presented and discussed in detail. The original mechanistic proposal of an "oscillation" between a rac-like (isotactic-selective) and a meso-like (nonstereoselective) conformation cannot explain the observed polymer configuration. The isotactic-stereoblock nature of the polymers obtained with the former catalyst proves unambiguously that the active cation "oscillates" between the two enantiomorphous rac-like conformations at an average frequency that, even at high propene concentration, is only slightly lower than that of monomer insertion. The less-hindered [(2-phenylindenyl)(2)ZrP](+) gives instead a largely stereoirregular polypropylene, which is the logical consequence of a faster ligand rotation; however, depending on the use conditions (in particular, on the nature of the cocatalyst and the polarity of the solvent), the polymerization products may also contain appreciable amounts of a fairly isotactic fraction. The peculiar microstructure of this fraction, with isotactic blocks of the same relative configuration spanned by very short atactic ones, rules out the possibility that the latter are due to an active species in meso-like conformation and points rather to a conformationally "locked" rac-like species with restricted ring mobility. The hypothesis of a stereorigidity induced by the proximity to a counteranion, which would play the role of the interannular bridge in the rac-bis(indenyl) ansa-metallocenes, was tested by computer modeling on a [rac-(2-phenylindenyl)(2)ZrMe(C(3)H(6))][B(C(6)F(5))(4)] ion couple and found viable.

Keywords

polipropilene, catalisi, OLEFIN POLYMERIZATION, stereochimica, NMR

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    68
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
68
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!