
The energy and its first and second geometrical derivatives obtained by DFT calculations for a number of conformations of a single molecule are used to parametrize intramolecular force fields, suitable for computer simulations. A systematic procedure is proposed to adequately treat either fully atomistic or more simplified force fields, as within the united atom approach or other coarse grained models. The proposed method is tested and validated by performing molecular dynamics simulations on several different molecules, comparing the results with literature force fields and relevant experimental data. Particular emphasis is given to the united atom approach for flexible molecules characterized by "soft" torsional potentials which are known to retain a high degree of chemical specificity.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 123 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
