
doi: 10.1021/cm049189u
Cobalt ferrite, CoFe2O4, nanoparticles have been obtained from pre-prepared layered double hydroxide carbonate, LDH-CO3, by mechanical milling. X-ray powder diffraction shows the only product of the milling for 5 h of the LDH-CO3 is cobalt ferrite nanoparticles. Longer-term milling induces particle growth characterized by sharpening of the Bragg peaks and an increase of the blocking temperature, while prolonged milling results in the formation of some cobalt metal. Mossbauer spectra and temperature dependence of the magnetization of the 5-h milled sample suggest that it consists of nanoparticles of size less than 10 nm with blocking temperature of 200 K, in good agreement with microscopy showing an average size of 6 nm. The magnetic properties exhibit a strong dependence on the particle size as a result of an unusual cation distribution and of surface effect. The saturation magnetization at 5 K and the squareness of the hysteresis loops increase with the average particle size. The difference between zero-...
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 258 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
