
doi: 10.1021/ci9004089
pmid: 20666408
We apply recently developed techniques for pattern recognition to construct a generative model for chemical structure. This approach can be viewed as ligand-based de novo design. We construct a statistical model describing the structural variations present in a set of molecules which may be sampled to generate new structurally similar examples. We prevent the possibility of generating chemically invalid molecules, according to our implicit hydrogen model, by projecting samples onto the nearest chemically valid molecule. By populating the input set with molecules that are active against a target, we show how new molecules may be generated that will likely also be active against the target.
ErbB Receptors, Drug Delivery Systems, Cyclooxygenase 2 Inhibitors, Models, Chemical, Molecular Structure, Catalytic Domain, Chemistry, Pharmaceutical, Humans
ErbB Receptors, Drug Delivery Systems, Cyclooxygenase 2 Inhibitors, Models, Chemical, Molecular Structure, Catalytic Domain, Chemistry, Pharmaceutical, Humans
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 23 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
