Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Modeling Robust QSAR

Authors: Andrzej Bak; Rafal Gieleciak; Tomasz Magdziarz; Jaroslaw Polanski;

Modeling Robust QSAR

Abstract

Quantitative Structure Activity Relationship (QSAR) is a term describing a variety of approaches that are of substantial interest for chemistry. This method can be defined as indirect molecular design by the iterative sampling of the chemical compounds space to optimize a certain property and thus indirectly design the molecular structure having this property. However, modeling the interactions of chemical molecules in biological systems provides highly noisy data, which make predictions a roulette risk. In this paper we briefly review the origins for this noise, particularly in multidimensional QSAR. This was classified as the data, superimposition, molecular similarity, conformational, and molecular recognition noise. We also indicated possible robust answers that can improve modeling and predictive ability of QSAR, especially the self-organizing mapping of molecular objects, in particular, the molecular surfaces, a method that was brought into chemistry by Gasteiger and Zupan.

Related Organizations
Keywords

Models, Molecular, Stochastic Processes, Models, Statistical, Databases, Factual, Molecular Conformation, Quantitative Structure-Activity Relationship, Models, Theoretical, Chemistry, Models, Chemical, Computer Simulation, Neural Networks, Computer, Algorithms, Software

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    88
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
88
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author? Do you have the OA version of this publication?