
Carbohydrate libraries printed in glycan micorarray format have had a great impact on the high-throughput analysis of the specificity of a wide range of mammalian, plant, and bacterial lectins. Chemical and chemo-enzymatic synthesis allows the construction of diverse glycan libraries but requires substantial effort and resources. To leverage the synthetic effort, the ideal library would be a minimal subset of all structures that provides optimal diversity. Therefore, a measure of library diversity is needed. To this end, we developed a linear representation of glycans using standard chemoinformatic tools. This representation was applied to measure pairwise similarity and consequently diversity of glycan libraries in a single value. The diversities of four existing sialoside glycan arrays were compared. More diverse arrays are proposed reducing the number of glycans. This algorithm can be applied to diverse aspects of library design from target structure selection to the choice of building blocks for their synthesis.
Small Molecule Libraries, Polysaccharides, Glycomics, Algorithms
Small Molecule Libraries, Polysaccharides, Glycomics, Algorithms
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 18 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
