Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A Pneumocystis carinii Group I Intron Ribozyme That Does Not Require 2‘ OH Groups on Its 5‘ Exon Mimic for Binding to the Catalytic Core

Authors: Constantine G. Haidaris; Francis Gigliotti; Stephen M. Testa; Douglas H. Turner;

A Pneumocystis carinii Group I Intron Ribozyme That Does Not Require 2‘ OH Groups on Its 5‘ Exon Mimic for Binding to the Catalytic Core

Abstract

The recent increase in the population of immunocompromised patients has led to an insurgence of opportunistic human fungal infections. The lack of effective treatments against some of these pathogens makes it important to develop new therapeutic strategies. One such strategy is to target key RNAs with antisense compounds. We report the development of a model system for studying the potential for antisense targeting of group I self-splicing introns in fungal pathogens. The group I intron from the large ribosomal subunit RNA of mouse-derived Pneumocystis carinii has been isolated and characterized. This intron self-splices in vitro. A catalytically active ribozyme, P-8/4x, has been constructed from this intron to allow measurement of dissociation constants for potential antisense agents. At 37 degrees C, in 50 mM Hepes (25 mM Na+), 15 mM MgCl2, and 135 mM KCl at pH 7.5, the exogenous 5' exon mimic r(AUGACU) binds about 60 000 times more tightly to this ribozyme than to r(GGUCAU), a mimic of its complementary binding site on the ribozyme. This enhanced binding is due to tertiary interactions. This tertiary stabilization is increased by single deoxynucleotide substitutions in the exon mimic at every position except for the internal A, which is essentially unchanged. Thus 2' OH groups of the 5' exon mimic do not form stabilizing tertiary interactions with the P-8/4x ribozyme, in contrast to the Tetrahymena L-21 ScaI ribozyme. Furthermore, at 37 degrees C, the exogenous 5' exon mimic d(ATGACT) binds nearly 32 000 times more tightly to the P-8/4x ribozyme than to r(GGUCAU). Therefore, oligonucleotides without 2' OH groups can exploit tertiary stabilization to bind dramatically more tightly and with more specificity than possible from base pairing. These results suggest a new paradigm for antisense targeting: targeting the tertiary interactions of structural RNAs with short antisense oligonucleotides.

Related Organizations
Keywords

Base Sequence, Hydroxyl Radical, Pneumocystis, Circular Dichroism, RNA Splicing, Molecular Sequence Data, Exons, Catalysis, Introns, Substrate Specificity, Mice, RNA, Ribosomal, Animals, Nucleic Acid Conformation, Thermodynamics, RNA, Catalytic, Protein Binding

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    38
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
38
Average
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!