Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Purine Nucleoside Phosphorylase. 2. Catalytic Mechanism

Authors: Richard L. Walter; Steven E. Ealick; Mark D. Erion; Johanna D. Stoeckler; Wayne C. Guida;

Purine Nucleoside Phosphorylase. 2. Catalytic Mechanism

Abstract

X-ray crystallography, molecular modeling, and site-directed mutagenesis were used to delineate the catalytic mechanism of purine nucleoside phosphorylase (PNP). PNP catalyzes the reversible phosphorolysis of purine nucleosides to the corresponding purine base and ribose 1-phosphate using a substrate-assisted catalytic mechanism. The proposed transition state (TS) features an oxocarbenium ion that is stabilized by the cosubstrate phosphate dianion which itself functions as part of a catalytic triad (Glu89-His86-PO4=). Participation of phosphate in the TS accounts for the poor hydrolytic activity of PNP and is likely to be the mechanistic feature that differentiates phosphorylases from glycosidases. The proposed PNP TS also entails a hydrogen bond between N7 and a highly conserved Asn. Hydrogen bond donation to N7 in the TS stabilizes the negative charge that accumulates on the purine ring during glycosidic bond cleavage. Kinetic studies using N7-modified analogs provided additional support for the hydrogen bond. Crystallographic studies of 13 human PNP-ligand complexes indicated that PNP uses a ligand-induced conformational change to position Asn243 and other key residues in the active site for catalysis. These studies also indicated that purine nucleosides bind to PNP with a nonstandard glycosidic torsion angle (+anticlinal) and an uncommon sugar pucker (C4'-endo). Single point energy calculations predicted the binding conformation to enhance phosphorolysis through ligand strain. Structural data also suggested that purine binding precedes ribose 1-phosphate binding in the synthetic direction whereas the order of substrate binding was less clear for phosphorolysis. Conservation of the catalytically important residues across nucleoside phosphorylases with specificity for 6-oxopurine nucleosides provided further support for the proposed catalytic mechanism.

Keywords

Models, Molecular, Purinones, Protein Conformation, Molecular Sequence Data, Crystallography, X-Ray, Ligands, Catalysis, Substrate Specificity, Structure-Activity Relationship, Models, Chemical, Purine-Nucleoside Phosphorylase, Mutagenesis, Site-Directed, Animals, Humans, Computer Simulation, Amino Acid Sequence

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    135
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
135
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author? Do you have the OA version of this publication?