
doi: 10.1021/bi9619435
pmid: 9033396
Type I DNA restriction/modification enzymes protect the bacterial cell from viral infection by cleaving foreign DNA which lacks N6-adenine methylation within a target sequence and maintaining the methylation of the targets on the host chromosome. It has been noted that the genes specifying type I systems can be transferred to a new host lacking the appropriate, protective methylation without any adverse effect. The modification phenotype apparently appears before the restriction phenotype, but no evidence for transcriptional or translational control of the genes and the resultant phenotypes has been found. Type I enzymes contain three types of subunit, S for sequence recognition, M for DNA modification (methylation), and R for DNA restriction(cleavage), and can function solely as a M2S1 methylase or as a R2M2S1 bifunctional methylase/nuclease. We show that the methylase is not stable at the concentrations expected to exist in vivo, dissociating into free M subunit and M1S1, whereas the complete nuclease is a stable structure. The M1S1 form can bind the R subunit as effectively as the M2S1 methylase but possesses no activity; therefore, upon establishment of the system in a new host, we propose that most of the R subunit will initially be trapped in an inactive complex until the methylase has been able to modify and protect the host chromosome. We believe that the in vitro assembly pathway will reflect the in vivo situation, thus allowing the assembly process to at least partially explain the observations that the modification phenotype appears before the restriction phenotype upon establishment of a type I system in a new host cell.
Transcription, Genetic, Macromolecular Substances, DNA Restriction Enzymes, Recombinant Proteins, Molecular Weight, Kinetics, Protein Biosynthesis, Chromatography, Gel, Electrophoresis, Polyacrylamide Gel, Cloning, Molecular, Chromatography, High Pressure Liquid
Transcription, Genetic, Macromolecular Substances, DNA Restriction Enzymes, Recombinant Proteins, Molecular Weight, Kinetics, Protein Biosynthesis, Chromatography, Gel, Electrophoresis, Polyacrylamide Gel, Cloning, Molecular, Chromatography, High Pressure Liquid
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 94 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
